
Situation Dillon2: Numerical Integration 
Prompt 
A Calculus class has just completed work on symbolically integrating using the 

basic techniques.  The class is asked to evaluate sin(x2 )dx
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Commentary 
Some integrals cannot be solved symbolically.  There is initially some confusion when 
students first encounter an integral that must be evaluated by numeric methods.  Starting 
with the chain rule for differentiating and working backwards from the integrand 
alleviates some of the confusion, as do examples with integration by substitution and with 
integration by parts.  Numerical evaluation is necessary to calculate the value of this 
integral.  Rectangular sums, the trapezoidal rule, and series are ways to estimate the value 
of this integral.  
 
Mathematical Foci 
 
Mathematical Focus 1 
Using the chain rule for differentiation, integration by substitution and integration by 
parts identifies an integral as one that cannot be done by symbolic methods. 
Students’ first reaction to sin x2( )∫ dx  is an answer of − cos x2( ) + C .  By checking this 
“answer” with the chain rule, the integrand should be 2xsin(x2).  Working back and forth 
between various examples with the chain rule internalizes recognition of the need for the 
composition of functions needing the derivative of the argument in order to integrate an 
integrand involving composition.  Since u-substitution is an algorithm to simplify such 
problems, u-substitution is ruled out as a method to solve sin x2( )∫ dx .  When integration 

by parts is introduced, re-introducing the prompt sin x2( )∫ dx  and trying to integrate 
symbolically, again, does not work.  The use of composition of functions and how that 
affects the integrand is explored in a new light.  Finally, use of trigonometric substitution 
may be tried, but there are no suitable substitutions.  Students have practiced with a 
variety of techniques, have learned some integrals will not succumb to any techniques, 
have internalized some process to recognize integrals that cannot be done symbolically, 
and have a need to estimate definite integrals.  Further explorations with symbolic 
manipulators (TI-89, In-Spire, Maple) solidify the concepts and internal rule. 
 
Mathematical Focus 2 
An integral may be estimated by partitioning it into polygons. 
The graph indicates a single triangle is a good way to estimate the area under this curve, 

i.e., to estimate the value of sin(x2 )dx
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There is obviously area not needed in this approximation.   
 
 
 
 
 
 
 
 
 
 
 
 
Students may consider partitioning on the y-axis, but that goes back to the defining the 
integral as the area under the curve with the x-axis, since the prompt uses dx.   
 
Mathematical Focus 3 
Partitioning with rectangles (Riemann sums). 
A common way to estimate the area under the curve is to partition the region into 
rectangles.  One way to do that is to create n equal intervals on the x-axis, then draw 
rectangles whose right endpoint is on the curve.   
 
 
 
 
 
 
 
 
 
 
 
 

The area is approximately 
0.5 * 1*0.842 = 0.421 

 

Subdividing into more shapes gives a 
better estimate.  Since vertical lines 
are being used to partition along the 
x-axis, all the partitioning shapes will 
be triangles, trapezoids and 
rectangles.  This sets the stage for 
further exploration. 

 

Here, two right rectangles have been 
created.  Obviously, this area is too large.  
By creating more and more rectangles, 
the overestimation becomes closer to the 
actual value.  Using sigma notation and 
the limit of the number of partitions (n) 
as n approaches infinity, gives the 
integral value.  By using different 
numbers of rectangles, the area may be 
approximated to any desired degree. 



While right rectangles overestimate here, a left rectangle (left endpoint on the curve) will 
underestimate.  Experimenting with these drawings and averaging the two results (right 
rectangle and left rectangle) enhances the concept of partitioning and making better 
estimates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Exploration of different curves should be done so a relation between increasing, 
decreasing, concave up and concave down can be made with the two types of estimates 
(concavity is not a factor, right rectangle overestimates on increasing and underestimates 
on decreasing).  Using horizontal lines, oblique lines and curves leads to the realization 
that right and left rectangles are exact when a horizontal line is the curve.   
 
The idea of averaging the two sums is closely related to using the midpoint of the interval 
to create the rectangles.  Comparisons between the average of the right and left rectangles 
should be done and generalizations made, using different curves. Exploration of different 
curves should be done so a relation between increasing, decreasing, concave up and 
concave down can be made with the estimate (Midpoint rectangles are exact with 
increasing and decreasing. Though it may be hard to distinguish, this estimate is over for 
concave down and under for concave down).  
 
 
 
 
 
 
 
 
 
 
 
 
The next step is to create partitions that may have different length partitions on the x-axis.  
Different shaped curves may be more accurately estimated by doing this.  Then, the 
concept is to take the limit of the largest partition length as it approaches zero (that is, the 
number of partitions increases to infinity) to define the more general Riemann sum.   

 

The left rectangles underestimate, 
and one rectangle is a “default” 
rectangle, as it is a line segment 
with area zero. 

 



The final polygonal estimation is the Trapezoidal Rule.  Again, the relationship between 
the general form of the Trapezoidal Rule should be compared to the right and left 
rectangle approximations to see the relationship that exists (it is the average of the two). 
Again, experimentation determines the Trapezoidal Rule overestimates for concave up 
curves and is under for concave down.  As with the midpoint rectangle, the estimate is 
exact for oblique lines. 
 
Mathematical Focus 4 
The error bounds may calculated for the right rectangle, left rectangle, midpoint rule and 
Trapezoidal rule.  

For I = ƒ x( )
a

b

∫ dx , the error bound rule for the right and left hand rules is the same.  Let 

Rn be the notation for the right hand rule of n-subdivisions, (Ln, Mn, Tn defined in a 
similar manner).  
For Rn and Ln, K1 is defined as a constant that has value greater than the absolute value of 
the first derivative of ƒ(x) for all x in [a, b].  Frequently, K1 must be estimated, but as the 
following rule is a set of error bounds, it is all right to overestimate K1 (but not to 
underestimate it).  

I − Rn ≤
K1 b − a( )2

2n
 and I − Ln ≤

K1 b − a( )2
2n

 .  This is an estimate (bound).  The actual 

error may be less.  Now it is possible to pick an error size (say .01) and to determine the 
number of intervals needed to estimate the integral to within that bound. 
Similar rules exist for the midpoint rule and the Trapezoidal Rule.  Though students are 
apt to consider the Trapezoidal Rule to be more accurate when observing the graphs, the 
midpoint rule has a lower error.  Each of these bounds uses K2, which is the maximum 
value of the second derivative of ƒ(x) for all x in [a, b].   
 

I − Mn ≤
k2 b − a( )3
24n2

   and I − Tn ≤
k2 b − a( )3
12n2

. 

 
Mathematical Focus 5 
Taylor series may be used to estimate integrals.  Using Alternating Series Test or 
Taylor’s Theorem, the error bounds for these estimates may be calculated.  
Taylor series are used to write polynomial approximations of functions.  The Taylor 
series for sinx expanded about the point x = 0 is 

 

sin x = x − x3

3!
+
x5

5!
−
x7

7!
+ = −1( )n x2n+1

(2n +1)!n=0

∞

∑   The series has a radius of convergence 

of infinity and an interval of convergence of all Real numbers, meaning the series 
converges for any x that is used.  
 



Taylor series allow substitution of variables, so that sin(x2) may easily be written as a 
Taylor series about x = 0 as 

 

sin x2( ) = x2 − x6

3!
+
x10

5!
−
x14

7!
+ = −1( )n x2( )2n+1

(2n +1)!n=0

∞
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∞

∑  

Using the ratio test, the interval of convergence is still all Reals. 
Since this is a power series, both the integral and the derivative of the series have the 
same radius of convergence as sin(x). Now we must integrate the series. 
 
 
 

 

sin x2( )dx
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∫ dx  

 
This gives 
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which is an alternating series. Using the alternating series test, an estimate to any desired 
degree of accuracy may be made.  If the error is to be less than .001, the first term of the 

series less than .001 is 1
11 ⋅5!

, so only the first two terms are needed for the estimate, 

which is about .3095. 
 
Post-commentary 
Estimation techniques may include Simpson’s Rule.  Derivation of the error rules may 
also be explored. Ostebee and Zorn’s Calculus is a good resource. There is far more 
material in the study of series and approximations, which has been assumed in the last 
focus. 
 


